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Two-dimensional Langmuir circulation in a layer of stably stratified water and the 
mathematically analogous problem of double-diffusive convection are studied with 
mixed boundary conditions. When the Biot numbers that occur in the mechanical 
boundary conditions are small and the destabilizing factors are large enough, the 
system will be unstable to perturbations of large horizontal length. The instability 
may be either direct or oscillatory depending on the control parameters. Evolution 
equations are derived here to account for both cases and for the transition between 
them. These evolution equations are not limited to small disturbances of the non- 
convective basic velocity and temperature fields, provided the spatial variations in the 
horizontal remain small. The direct bifurcation may be supercritical or subcritical, 
while in the case of oscillatory motions, stable finite-amplitude travelling waves 
emerge. At the transition, travelling waves, standing waves, and modulated travelling 
waves all are stable in sub-regimes. 

1. Introduction 
Langmuir circulation is a mechanically produced convective process of the surface 

layer of the ocean, and of lakes and ponds. The convection takes the form of rolls 
with axes generally aligned with the wind. The subsurface motion imprints the water 
surface with streaks, or ‘windrows’, parallel to the wind. This phenomenon, first 
observed by Irving Langmuir (1938), is believed to be an important contributor to 
the mixing of the upper layers of natural bodies of water (cf. the review by Leibovich 
1983, and the experimental observations reported by Weller et al. 1985; Smith, Pinkel 
& Weller 1987; Weller & Price 1987). A theory by Craik & Leibovich (1976) attributes 
the convective mechanism to the distortion of wind-driven currents by the cumulative 
effects of wind-driven surface waves, and this has been elaborated by Craik (1977), 
Leibovich (1977a, b) and others. 

The theory of the phenomenon, as well as casual observation, suggests a similarity 
with thermal convection and its generalization, double-diffusive convection, when 
the water is density stratified (usually stably so). Among other factors, the theory 
depends on the characteristics of the surface waves, which may be provided by 
supplying the wave spectrum. From this, the Stokes drift (Huang 1971) associated 
with the wave action can be calculated, and it is this that is needed as input to 
the theory. When the Stokes drift is approximated by a linear function of depth 
and the theory is restricted to motions independent of the wind direction, there is 
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a strict mathematical analogy to double-diffusive convection in a fluid with unit 
Prandtl number. Although this analogy fails when the restriction is lifted, it permits 
the two-dimensional results a broader interpretation, including the oceanographically 
important case of thermohaline convection. We devote this paper to situations meeting 
this pair of idealizations, to permit a unified treatment of double-diffusive convection 
and Langmuir circulation. 

Recently, two-dimensional Langmuir circulation and its physical relatives have 
been explored for a horizontally infinite layer of water of finite depth with a basic 
state consisting of rectilinear shear and linear temperature variation with depth. The 
recent work has assumed either Neumann (Leibovich, Lele & Moroz 1989; Cox et 
al. 1992a, b) or mixed (Cox & Leibovich 1993, referred to herein as CLI) boundary 
conditions applied to the perturbations to the basic state at the top and bottom 
surfaces of the layer of water. Neumann conditions were suggested as a model by 
Leibovich (1985). When the water layer is assumed infinite in the horizontal direction, 
Neumann conditions lead to an instability which has, at its critical threshold, a 
horizontally infinite wavelength. This feature of the instability is not an artifact of 
the idealization of constant Stokes drift gradient. The same feature arises in thermal 
convection (Sparrow, Goldstein & Jonsson 1964; Nield 1967), and also in Marangoni 
convection when the boundaries are assumed to be perfect thermal insulators. 

This failure to yield a finite preferred wavelength led Sivashinsky (1982) to study 
Marangoni convection with mixed boundary conditions, and the same motive guided 
CLI in the Langmuir circulation problem. A physical argument for mixed boundary 
conditions in Langmuir circulation was given by CLI. The mixed boundary con- 
ditions are in the form ax/& + /?x = 0, where z is the vertical coordinate and x 
is either the temperature (surrogate for buoyancy in the Boussinesq approximation) 
or the horizontal components of velocity, and the coupling coefficients represented 
schematically by /? are sometimes called ‘Biot numbers.’ When the Biot numbers for 
the mechanical boundary conditions (which will be designated by the symbol a, with 
subscripts when appropriate for the top and bottom surface, at which different values 
are permitted) are very small in the Langmuir circulation problem, the horizontal 
lengthscales are large relative to the depth, the ratio being the aspect ratio of the 
system. An asymptotic development in the Biot numbers is then equivalent to one 
in inverse aspect ratio not dissimilar to shallow-water theory. This procedure can be 
used to obtain amplitude equations for the nonlinear motions. This has been carried 
out by CLI and CLII (where CLII refers to Cox & Leibovich 1994), generalizing 
the previous investigations of Chapman & Proctor (1980) for thermal convection and 
of Sivashinsky (1982) for Marangoni convection. Our amplitude equations are not 
restricted to weak nonlinearity, in the sense that the perturbations can be comparable 
to the variations of the field quantities in the basic state - provided the variations 
in the horizontal direction remain slow, and the underlying assumptions of the 
Craik-Leibovich theory (in the application to Langmuir circulation) are not violated. 

CLI showed that when the ratio of the Biot number for the thermal boundary 
conditions to that for the mechanical boundary conditions is ‘large’, the onset of 
instability is determined by a (real) simple eigenvalue. Furthermore, attraction to the 
successor states of the system is determined by a single partial differential equation 
that is first order in time (Sparrow et al. 1964; Nield 1967; Chapman & Proctor 
1980; Chapman, Childress & Proctor 1980; Gertsberg & Sivashinsky 1981 ; Depassier 
& Spiegel 1982; Sivashinsky 1982, 1983; Roberts 1985). The form of this amplitude 
equation follows that found by the previous investigators cited. Some of the properties 
and consequences of this equation are studied in our paper CLII. 
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Here we consider the case where the ratio of Biot numbers is 'small'. CLI showed 
that on linear grounds the bifurcation may be to steady or to oscillatory convection, 
but were unable to find a nonlinear counterpart to the asymptotic theory controlling 
post-bifurcation evolution of the system. Here this derivation is carried out. The 
resulting pair of nonlinear evolution equations inherits the O(2) symmetry (invariance 
with respect to horizontal translations and to reflection of the horizontal coordinates) 
of the underlying three-dimensional primitive equation system. A so-called Takens- 
Bogdanov bifurcation, where the linear operator has two zero eigenvalues, separates 
the cases of steady and oscillatory convection. Similar behaviours occur in thermo- 
haline problems with stress-free isothermal, isohaline top and bottom boundaries. 
There, however, the bifurcations are degenerate and cannot be determined as easily 
as in the present case. 

The steady bifurcation is supercritical for small values of the dimensionless strat- 
ification parameter S ,  but is subcritical for larger values of this parameter. Such 
behaviour is similar to that found with a mechanical Biot number of zero by Cox et 
al. (19924. 

The oscillatory bifurcation found here is always supercritical : travelling waves are 
predicted to be stable, while standing waves are unstable, again in agreement with 
Cox et al. (19924. 

At the Takens-Bogdanov bifurcation we find that the travelling-wave branch of 
solutions is at first stable, but transfers its stability to the standing wave branch 
through a branch of modulated travelling waves as the parameters change from 
their bifurcation values. All three kinds of waves should therefore be observable in 
numerical computations. The branch of steady solutions is subcritical and unstable. 
This behaviour differs from that found by Cox et al. (1992~) for the case of zero 
mechanical Biot number, where standing waves could not be stable. 

After the first drafts of this paper had been completed, we became aware of a related 
analysis of a two-dimensional thermohaline problem by Cessi & Young (1992), and a 
referee has drawn our attention to two related papers by Hefer & Pismen (1987) and 
by Pismen (1988). Although each of these papers has connections with the subject and 
the analysis of this paper, they all differ in a number of respects. Cessi & Young (1992) 
consider the problem of forced thermohaline convection, driven by prescribing the 
salt flux and the temperature on the top surface, and zero fluxes of both temperature 
and salt at the lower boundary. Their analysis is based on a perturbation in aspect 
ratio, imposed a priori as a geometrical constraint through the forcing functions. By 
contrast, we consider an unforced stability problem, and are led to the introduction 
of large aspect ratio through the properties of the stability characteristics associated 
with boundaries which allow only small fluxes of temperature and salt. The pair 
of evolution equations found here permit oscillatory solutions as well as steady 
states, in contrast with the single evolution equation that controls the problem of 
Cessi & Young (1992), whose solutions are attracted to steady states. The papers by 
Hefer & Pismen (1987) and Pismen (1988) concern three-dimensional double-diffusive 
convection with boundary conditions like those treated in the present paper. Different 
equations are derived for each of the three cases - steady, oscillatory, and double- 
zero bifurcations - rather than the unified pair of equations that we obtain that 
encompass all of the separate cases. The analyses of Hefer & Pismen (1987) and 
Pismen (1988) apply asymptotically as the linear stability boundary is approached; 
and it is quite straightforward to show that our equations reduce to theirs in this limit. 
Pismen (1988) finds, with us, that travelling waves are preferred to standing waves 
near the oscillatory bifurcation in thermosolutal convection (but all are unstable 
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to three-dimensional disturbances). Stability of two-dimensional solutions to three- 
dimensional perturbations in Langmuir circulation has not been investigated in this 
long-wave model. Pismen does not describe the solutions to be expected near the 
double-zero bifurcation. 

2. Problem formulation 
The mathematical problems for double-diffusive convection and for two-dimensional 

Langmuir circulation are very similar. By suitable assignments of parameters and 
suitable interpretation of the field variables, both can be embraced by a single math- 
ematical model, to which our analysis will be applied. In this section, we lay out the 
two problems and their common model. 

2.1. The governing equations and boundary conditions for Langmuir circulation 
We consider the basic problem posed by CLI. In particular, we postulate a mixed 
layer bounded below by a strong thermocline. It is then plausible to suppose that 
vertical motions are inhibited by the thermocline, and that the vertical velocity 
can be neglected at the lower boundary of the layer. The layer is exposed to 
the atmosphere at the top boundary, and a constant wind speed exerts a stress 
on the air-sea interface, while at the same time surface waves propagate in the 
wind direction (taken to be in the direction of x* increasing) and these waves are 
associated with a Stokes drift in the x*-direction with speed US.  Here the asterisk 
denotes dimensional coordinates. The temperature of the air is also regarded as 
constant, and there is an associated heat transfer to the water that follows Newton’s 
law of cooling, so that the heat flux is proportional to the difference between the 
air and the surface water temperatures. At the base of the mixed layer, heat 
transfer to the water below follows the same law of cooling, possibly with a different 
constant of proportionality. The stress there is assumed to be associated with 
entrainment or detrainment of quiescent waters below the layer by (relatively slow) 
deepening or thinning of the mixed layer. We start from the theoretical description 
of Langmuir circulation due to Craik & Leibovich (1976). The complete set of 
governing equations in the form needed is given in Leibovich (1977b), and consists of 
the wave-filtered Navier-Stokes equations and energy equations under the Boussinesq 
approximation. 

The boundary conditions postulated permit a steady ‘structureless equilibrium’ to 
the wave-filtered equations of motion depending only on the depth. If z* is the 
vertical coordinate ranging from z* = -d at the mixed layer base to z* = 0 at 
the mean free surface, then the velocity of the structureless equilibrium is in the x* 
direction with speed U(z*)  and the temperature is T(z*) ,  both depending linearly on 
z*. We then take d d T / d z *  as the scale for temperature, d as the unit for length, 
and d2 /vT  as the unit for time, where vT is an eddy viscosity (assumed constant); 
dimensionless coordinates will be written without the asterisk. If the motion is 
assumed to be invariant in the x-direction, as we shall do, it proves convenient to 
scale the velocity component in the x-direction differently from those in the cross- 
wind plane (y,z) .  Accordingly, we take ddU/dz*  as the scale for the x-directed 
velocity component, and v T / d  as the scale for the cross-wind velocity components. 
Since the motion is independent of x, we can adopt a streamfunction y to represent 
the dimensionless velocity components v = d y / d z  and w = -dy /dy .  We let u be the 
dimensionless perturbation to the x-directed velocity component U ,  and we let 8 be 
the dimensionless perturbation to the temperature T .  
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The governing equations for the dimensionless perturbations then are (Leibovich 
1985) 

( & - V 2 ) V 2 y =  R h ( z ) - - S - + J ( y , V 2 v ) ,  au ae 
aY aY 

(2.14 

(2.lb) 

(2.lc) 

The parameters in these equations are 

which represent the destabilizing vortex force and the stratification, respectively, where 
/3 is the coefficient of thermal expansion, g is the acceleration due to gravity, and 

KT 

VT 

z = -  

is an inverse Prandtl number based on eddy coefficients of viscosity and thermal 
diffusivity. We assume throughout this paper that the mixed layer is either stably 
stratified or unstratified, that is, S 2 0. The function h(z)  is the dimensionless 
Stokes-drift gradient, so 

a Us a us 
-(z) = -(0)h(z), aZ  aZ 

where US(Z) is the Stokes drift (in the x* direction). Throughout this paper we shall 
take h(z)  = 1, which corresponds to making the Stokes drift a linear function of 
depth. The Jacobian is defined by J(a,b) = aybz - a,by. 

The boundary conditions on the dimensionless perturbation temperature are 

on z = 0, 
ae 
- + y t e  = 0 az 

and 
ae 
- - y h 6  = 0 on z = -1, (2.3) 
a Z  

where y t  and Y b  are small positive parameters. We define y = y t  + Y b .  

take the form 
The boundary conditions on the perturbation velocity field are derived in CLI, and 

aZv 1 av au a22 +-a,- =I# = - + a  az ,u=O o n z  =0, 
2 a Z  

and 

Here cct and a b  are small positive parameters. We define cc = at + ctb. 

The special case at = I%b = 7;' = y;' = 0 has previously been the object of 
the several studies (Leibovich et al. 1989; Cox et al. 1992a, b)  mentioned in the 
introduction. The derivation of the boundary conditions (2.2), (2.3), (2.4), (2.5), in 
particular the appearance of the factor 1/2 in the surface stress condition, is described 
in CLI. 
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Note that the problem is invariant under an arbitrary translation y + y + yo, 
and also under the transformation ( y ,  y)  -+ (-y, -y), properties that establish 'O(2) 
symmetry'. A physical consequence of this is that the system cannot distinguish left 
from right, so if travelling waves moving to the right are possible, then similar waves 
moving to the left are possible too. 

CLI provide estimates for a,,ab and y t ,yb  for the Langmuir circulation problem. 
According to their estimates at<ab, and the latter is estimated on the basis of the 
experiments of Kantha & Phillips (1976) to be 

where U, is the wind speed, and u* is the friction velocity in the water associated with 
the wind stress. If we contemplate a mixed-layer depth of 40m and a wind speed of 
10m s-l, then fq, - 8 x 10-4R.. A typical range for R. is 5 to 50. According to CLI, 
the y are expected to be comparable with, but perhaps smaller than, the a. 

2.2. The governing equations and boundary conditions for double diflusion 
The system (2.1) with h(z) = 1, describes thermohaline convection when the following 
interpretations are made: u is a temperature perturbation, 8 a concentration, R a 
thermal Rayleigh number, S a solutal Rayleigh number, z a Lewis number. In fact 
with this interpretation (2.1) holds only for a fluid with unit Prandtl number. For 
more general values of this parameter, which we denote by T ~ ,  the streamfunction y 
satisfies 

The boundary conditions we have described are appropriate for almost-insulating 
horizontal boundaries with an almost-constant concentration flux. The momentum 
boundary conditions are the physically meaningful ones of constant stress (so that 
the perturbations are stress-free) if we replace the first conditions of (2.4) and (2.5) 
by d2y/az2  = 0 at each boundary. This difference between the boundary conditions 
appropriate to the Langmuir circulation and thermohaline convection problems turns 
out to be immaterial in the analysis that follows (the difference would be significant 
at a higher order than we compute in an asymptotic expansion). 

The results we describe are phrased for the Langmuir circulation problem, but they 
apply with an appropriate interpretation to the thermohaline convection problem. In 
particular we give results for general values of zp- the Langmuir circulation problem 
corresponds to tp = 1. We assume throughout that z < 1, except in $7, where we 
discuss the special case of t = 1. 

3. When large-scale disturbances are important 
The linear stability of the basic state may be examined by considering normal modes 

of the linearized governing equations, proportional to eikyfut. When R is sufficiently 
small the basic state is stable to all small disturbances; as R is increased through 
a threshold value &(k),  dependent on the wavenumber k ,  the basic state becomes 
unstable to disturbances of that wavenumber. The first instability occurs when &(k)  
is minimized. We denote this minimum value of R by &, and the corresponding 
wavenumber by k,. 

Figure 1 illustrates the marginal stability curves in four different circumstances. 
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FIGURE 1. Some illustrative marginal stability curves for (2.1), computed numerically (see Cox et 
al. 1992a for more details): the critical value &(k) is plotted against wavenumber, k.  Below each 
curve the basic state is stable to small perturbations; it is unstable above. In all cases t = 1/6.7. 
(a) ut = &$ = 0, yt = Y b  = 0, S = 0. (b)  As for (a), except S = 5.  (c) As for (a), except at = 0.06, 
c(b = 0.24. (d) As for (a), except at = 0.06, c(b = 0.24, S = 5. In cases (a) and (b), the critical 
wavenumber vanishes: k,  = 0 when c( = 0. In the other two cases k, > 0 (when a > 0). In cases (a) 
and (c )  the bifurcation is steady (the eigenvalue cr = 0 at marginal stability) since the stratification 
of the mixed layer is weak (S = 0 < Sd = 3.14); in cases ( b )  and ( d )  the stronger stratification 
( S  = 5 > S d )  leads to an oscillatory bifurcation (cr = iiw). (Small kinks in the marginal curves (b) 
and (d) indicate where the oscillatory bifurcation gives way to a steady bifurcation when k exceeds 
some value, around 1.3.) 

When a vanishes, so does the critical wavenumber, k,, and the linear instability 
occurs first with the largest horizontal scale available. (The infinite critical wavelength 
when flux boundary conditions are applied to u (a  = 0) is not a consequence of the 
assumption of constant Stokes-drift gradient. Other monotonic profiles for h(z) yield 
k,  = 0.) When a > 0, the critical wavenumber is positive, and so a finite wavelength 
is selected according to the linear theory. In fact k, = O ( U ' / ~ )  as a --+ 0, and this 
limit allows considerable analytical progress to be made, not only with the linear 
stability problem, but also with the derivation of governing equations for nonlinear 
disturbances. 

It turns out that the value of y is pivotal in deciding on the nature of the bifurcation. 
When y = 0(1) (or ybl) the basic state becomes unstable in a steady bifurcation, as 
noted in the introduction. On the other hand, when y is small (no larger in order 
of magnitude than a), a physically significant limit to consider, the basic state may 
become unstable to either steady or oscillatory convection, according to whether the 
stratification parameter S is small or large, respectively. This case of small y is the 
subject of this paper. 
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turn to an asymptotic analysis of this situation. 
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Given the physical significance of disturbances of large horizontal lengthscale, we 

3.1. Disturbances of extreme length 
For physically reasonable values of the parameters, in particular of a, the critical 
wavenumber k,  is small, and y-variations occur slowly. We 
limit obtained by ignoring y-variations altogether. In this 
determined by one-dimensional 'heat equations' 

begin by examining 
case, both u and 0 

the 
are 

a u  ae 
at at 
- - D2u = 0, - - 7D28 = 0, 

where D= a/&. 
The solution to the initial-value problem is 

u = C ui(-a, sin piz + pi cos piz)e-P:f, 

0 = C ei(-yt  sin qiz + qi cos qiz)e-Tq2f, 

i-1 
co 

i= 1 

where the Uj, O j  for j = 1,2,. . . are constants and where pi, qi are determined by 

(at + ab)pi = (p ;  - stab) tan pi, 

( Y t  + "?b)qi = (4; - YtYb) tanqi. 

The roots are ordered as follows: 0 < p1 < p2 < . . ., and 0 d q1 < q 2  < . . .. 
When at, ab, yt, Y b  are all very small the components of the solution proportional to 

u1 and 61 decay slowly - like exp(-at) and exp(--zyt), where we recall our definitions 

a = at + ab, y = Y t  + Yb. 

The long-time motion is then determined by the slowly decaying contribution associ- 
ated with p1,ql  - all other contributions decay more rapidly. 

4. Long-wave approximation 
Now we examine the evolution of the system when slow spatial dependence is 

permitted in the horizontal direction. To this end, and guided by the linear stability 
considerations discussed earlier, we write 

&,b = e2&t,b, Yt,b = C?'yt,b, Y = E'y, = 6' y. 

With these substitutions, the governing equations take the form 

(D2 - + [aYy + J ( Y , u )  + = 0, 

( T D ~  - a,)e + €[ay Y + J( Y ,  e) + = 0, 

+ 2 ~ ~ a 2 ,  Y - a& Y lZp] + .2 [J (  Y ,  a2, Y ) / r p  + a; Y ]  = 0. 

D4Y -atD2Y//z, + ~ ~ ( R u - S O ) + ~ [ J ( Y , D ~ Y ) / ~ ~  

Here the Jacobian J has been re-defined to involve derivatives with respect to Y 
rather than y. The boundary conditions are 

Y = D2Y + it.2EtDY = DU + e2Bttl= DO + e2yt0 = 0, 
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at z = 0, and 

at z = -1. These are the boundary conditions appropriate for Langmuir circulation 
(CLI), but for double-diffusive convection between stress-free boundaries the second 
of each set of conditions should be replaced by D2Y = 0 at z = 0,-1. 

We intend the parameter e2 to denote the order of magnitude of a and y ,  so the 
parameters ti t$  and Tt,b are of order one. This leaves us some freedom in the choice 
of e, and allows us easily to encompass the special case a = 0. When a > 0 we 
may for definiteness specify e unambiguously by e2 = a, if we choose to do so. Note 
that although streamfunction perturbations are small (0(d2)) ,  the total variation of 
the wind-directed velocity and the temperature are unrestricted by the smallness of 
E :  these variations may be arbitrarily large, provided variations taking place in the 
horizontal are slow. 

We seek a solution asymptotically valid in the limit as e + 0, and expand the 
unknowns as power series in the small parameter: 

U = U o + E U 1 + - ,  e = ~ , + ~ e ~ + . . . ,  Y = Y ~ + ~ Y ~ + . . . .  

The coefficients of the powers of c here are functions of Y,  z and of time. To avoid 
secular terms and the consequent disordering of the series for large time, we must 
make provision for slow time variations. We choose to do this by the method of 
multiple timescales, supposing that all functions depend on the fast time 7 = t, and 
slow times T = et, 9 = e2t, and so forth. Then we must also make the replacement 

(4.1) 

Separating powers of e, we generate a hierarchy of equations to solve in sequence. 

a, = ai + F a T  + e2ai. + . - . 
in the governing equations. 

At the lowest order, we find UO, 80 are independent of t and z ,  so 

u = UO( Y ,  T ,  f), 
e = eo(y, T ,  9). 

We subsequently define uo and 00 to be the depth-averaged windward velocity and 
temperature perturbations, respectively. The streamfunction to this order is 

To leading 
convection 

At O(f), 

order the shape of the streamlines does not depend on the nature of the 
(that is, steady or oscillatory). 
the equations to be solved are 

subject to the boundary conditions 

Y l  = D2Y1 = Dul = DO1 = 0, on z = 0,-1. 

The right-hand sides of (4.2) and (4.2) do not depend on t. To avoid secular terms 
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that depend linearly on the fast time, we must impose the orthogonality conditions 

f 0  (-dy Yo - d tuo  - J (  Yo, UO) + ~ T U O )  dz = 0, 

These conditions lead to the evolution equations at lowest order 

(4.3) 

Returning to the problem for u1,el, and making use of the orthogonality conditions 
(4.3) we find 

1 dTUO = 32, (uo + [SO0 - Ruol) , 
&do = a$ (reo + &, [seO - R U ~ ] )  . 

1 1 
120 120 

u1 = ---dt(Ruo - SBo)P(z) + -(R&uo - Sd,Oo)&uoQ(z), 

1 1 
1202 1202 

el = - - - ~ ; ( R U ~  - seo)p(z )  + - - - ( R ~ ~ U ~  - sa,eo)a,eoQ(z). 

where 

1 z2 5 2 3  2 5  26 p ( z )  = - - - - - + - + - 
56 2 6 2 6 '  

1 5z2 5z4 
2 2  2 

Q ( z )  = -- + - - - - z5, 

Note that the constant terms in P ( z )  and Q(z)  are chosen to make the depth average 
of u1 and 81 vanish, in accord with our previous remarks. 

The problem for !PI can now be solved. The solution is straightforward, but long, 
so we do not record it here. 

Continuing to 0(e2 ) ,  we have the equations 

where 

Fi = 8, yi + d c ~ i  + J (  yi, uo) + J (  Yo, ~ 1 )  - d ~ u i ,  
F~ = a, y1 + 782, el + J ( Y ~ ,  e,) + J ( Y J ~ ,  el)  - &el, 

subject to the boundary conditions 

(4.6) 1 Du2 = --Btuo, DO2 = -rt& at z = 0, 
D u ~  = &bUO, DO2 =?/be0  at Z = -1. 

Integrating (4.4) and (4.5) across the layer and applying the boundary conditions 
(4.6), we find 

0 

-EUO = a+uo - 1, F1 dz, 

.-2?/80 = a+& - 
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Carrying out the integrals and rearranging, we arrive at the results, 
4 } (4.7) 

aiuo = --Bu~ - ala,uo + bla;eO + Tclay [(RaYUO - ~ a ~ e ~ ) ~ a ~ ~ ~ ]  , 

aFe0 = -Tgeo - ala4,uo + b1a4,e0 + C l a y  [(Rayuo - sa,eo)2a,eo] , 
where 

79833600~~1 = R (31(S - RT) + 67320~(2~, - l ) / ~ ,  + 561(R - S ) T / T , ) ,  

79833600~bl = S (31(S - RT) + 67320~(2~, - T ) / T ,  + 561(R - S ) T / T , ) ,  
362880~~1 = 31. 

Now we combine the two slow timescales, invoking (4.1), (4.3), (4.7) and dropping 
the subscripts on uO,& to give 

1 1 aru = - r 2 ~ ~  +€a$ u + - (se - RU) [ 120 

+ e2 {-ala4,u + b l a p  + p a y u  - ~ a , e ) ~ a , ~ ]  }, 

1 1 ate = -c2Tye + €a; Te + - (se - RU) [ 120 

+ e2 {-ala4,u + bla4,e +c lay  p a y u  - ~ a ~ e ) ~ a ~ e ] } .  

If we restore the definitions (a, y )  = e2(C(, j j ) ,  and revert to the original horizontal 
variable y = Y / & ,  then the small parameter formally disappears from the pair of 
evolution equations. This neater form is 

1 1 
a2 [ 120 

au 
- =-au+- u + - ( s e - ~ u )  
at a Y  

(4.8~) 
a4u a4e 
a y 4  ay4 

-u1- +bl-- +zc1- 

1 1 
a2 [ 120 

ae - = -Tye + - re + __ (se - ~ u )  
at a Y  

In the remainder of this paper we discuss the linear and weakly nonlinear stability 
of equations (4.8). Numerical solutions are described by Cox (1994). 

5. Linear stability 
We examine first the dynamics described by the linearized form of (4.8), and 

consider normal modes proportional to eiky+at. The characteristic equation is the 
quadratic 

where 
cr2 - (d +B)o + d.9 -@a = 0, (5.1 ) 

d = -a- 1 - - k2 -a1k4, ( i o )  
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B = -zCk2 + blk4, 

9 = -ZY - ~ ( l  + C)k2 + blk4, 
and where for economy of symbols in later expressions we have introduced the 
notation 

S Z = -  
1202' 

5.1. Steady bifurcation 

The basic state becomes unstable to steady convection (CJ = 0) when d9 - ,959 = 0; 
the minimum of the marginal stability curve occurs when d ( d 9  - B'V)/dk = 0 also. 
These conditions yield the critical value 

R, = 120 { 1 + Z + 2 [ (a ( l  + C) - yC)(al - b l / z ) ]  l i 2 }  + O(e2) ,  (5.2) 

and the critical wavenumber k,, where 

k: = [(a(l+ C) - y Z ) / ( ~ l  - b l / ~ ) ]  ' I 2  + O(f2). 

In these expressions we evaluate a1 and bl at R = 120(1 + C), and absorb the errors 
incurred by not using the exact value (5.2) of R, in the terms of O(e2). In this way 
the expression for R, is made explicit. In order for the square roots to be real, we 
require that (a( 1 + 2 )  - yC)(al - b l / z )  > 0. When we consider steady convection, we 
shall assume that this inequality is satisfied (otherwise our scaling assumptions fail 
to yield a non-zero value for the critical wavenumber). For a steady bifurcation, the 
coefficient of CJ in the characteristic equation must be positive, that is, 

120[2(1 + C) + 11 - R + O(e2)  > 0. 

This condition may be written (disregarding small terms) as C < Cd, where Cd = 
z/( 1 - z) + O(E).  Therefore if the stratification is sufficiently mild the bifurcation is 
predicted to be to steady convection. 

5.2. Oscillatory bifurcation 
An oscillatory bifurcation occurs when d + 9 = 0, that is, when 

k2 - (a1 - bl)k4 = 0. 
R 

Here we see that both a and y act to stabilize the widest rolls, while the narrowest 
rolls are stabilized only if a1 - bl > 0. We shall assume that this condition is satisfied 
(otherwise further terms in the small-k expansion - at least those of O(e3)  - must 
be included to stabilize the smaller-scale motions (Knobloch 1989)). By solving 
d + 9 = 0 together with d ( d  + 9)/dk = 0 we find that the critical wavenumber is 

and the critical value of R is 
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As for the analysis of the steady bifurcation, we make the expression for R, explicit 
by evaluating a1 and bl at R = 120(1 + t(1 + C)), and incur errors of 0(c2).  

At the onset of instability g = +ipk;, where 

p 2  = z(1 + C) - &Z/120 + O(E) > 0. 

This inequality may be rewritten as C > cd, that is, for sufficiently strong stable 
stratification we expect an oscillatory bifurcation. 

5.3. Double-zero bifurcation 
If for some k and R both d + 9 = 0 and d9 - 8% = 0 then 0 = 0 is a 
double root of the characteristic equation (5.1). If, further, d ( d  + 9)/dk = 0 and 
d ( d 9  - g%)/dk = 0, then there is a pair of zero eigenvalues at the minimum 
of the marginal stability curve. To achieve this circumstance, the parameters must 
take values which we denote by (&,Cd,ad,yd), and these together with the critical 
wavenumber k, must satisfy 

1091 + 561z/rp (1091 + 561/zp)r2 
dl = el = 

5544( 1 - Z) ’ 5544( 1 - Z) . 
The regions of stability in (S, R)-space suggested by the analysis we have given 

above are given in figure 2. For small values of the stratification parameter S there is 
a steady bifurcation as R is increased, for larger values of S an oscillatory bifurcation, 
and in between is the double-zero point. 

If we take molecular values for the viscosity v and thermal diffusivity JC of water, 
we arrive at a value for z of approximately 1/6.7. In this case s d  = 120ZCd = 3.14. 
Therefore for values of S larger than around 3 we expect an oscillatory bifurcation. 
If instead we take more realistic ‘eddy’ values for v and JC then z is nearer to 1. In 
the limit as z + 1- the value Sd dividing steady and oscillatory convection diverges, 
and steady convection is the most widely applicable case, except for extremely large 
values of the stratification parameter. 

If y is larger than O(c2)  (for example, if y = 0(1) or y = co) then the bifurcation 
for small k is always steady, the temperature variable is zero at leading order, and a 
different analysis is required (CLI ; CLII). 

6. Weakly nonlinear analysis 
6.1. Steady convection 

Near the steady bifurcation of (4.8) we let the solution be expanded in powers of a 
small parameter, 6, so that 
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+ Unstable / 

I/ I Steady bifurcation 

Stable 

/ 

sd 

S 
FIGURE 2. Stable and unstable regions in (S, @-space (equivalently, in (C,R)-space, since S = 120zC). 
For small values of S (or C), increasing R destabilizes the basic state through a steady bifurcation; 
for larger values of S the bifurcation is oscillatory. At the point ( S d ,  &) the linear operator of (2.1) 
has a pair of zero eigenvalues - this is a Takens-Bogdanov bifurcation. 

where R = R, + S2R2, and &, is the critical value of R found in 95. Then to satisfy 
(4.8) at O(S), we recover the linearized problem, and find 

(i:) = (k) (A( T)e'kcY + c.c.) , 

where m = - d / g  = l / z  + O(e) .  The slow timescale is now T = S2t ,  and C.C. 
denotes the complex conjugate of the preceding term. Because there are no quadratic 
nonlinear terms in (4.8) we set U2 = 0. 

The linearized operator at critical conditions is self-adjoint, so at O ( S 3 )  we form 
the inner product of (4.8) with the complex conjugate of the linear eigenvector, or 
more specifically with the vector (9 98 ) e-ikcJ'. This leads to the Landau equation 

(d + 9)- dA = (9 - @)---A R2k,2 - 3k;cl(R - n ~ S ) ~ ( d  + z9)AIAI2. 
d T  120 

If we take only the leading-order contributions (in e) to the coefficients we find that 
A satisfies 

where 0 < C' = z2/ (1 - 7') < &. The steady bifurcation is therefore supercritical for 
0 < C < C', and subcritical for C* < C < Cd. (Note that as z + I-, C*/& -+ 1/2, so 
that for half of its existence the steady bifurcation is supercritical, and for the other 
half subcritical.) 

6.2. Oscillatory convection 
For the oscillatory bifurcation, as for the steady bifurcation, we expand the variables 
u and 8, and assume that R is close to the critical value calculated in 55. Then to 
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leading order in 6, the solution of (4.8) is the superposition of left- and right-travelling 
waves: 

u1 = (AR(T)ei(kcY--Wtf + AL(T)ei(kcY+wtf) + c.c., 

= (mAR(T)ei(kcu--Wf) + r n * ~ ~ (  T)ei(ky+at) ) + C.C., 

where 
Z - C d  4 

0 2  = &#g = 7 2 -  k, + 0 ( E 3 ) ,  
z d  

and now rn = -(io + &#)/a. Just as for the steady bifurcation, there is no quadratic 
forcing so we choose to set U2 = 0 2  = 0. 

At 0 ( d 3 )  in (4.Q and after much algebra we find 

(6.3) 
dAR 
d T  

2i0- = PiAR + i”2AR(IAR12 + 21ALI2), 

where 
1 

120 
PI = -k: { -kfz + icu} R2 + O(c3)  

and 
p2 = 120clk:RJ 1 - z) { -io( 1 + z) + k:z(z - 3 - Z + zZ)} + 0(r4). 

In what follows we ignore the small terms indicated in the expressions for p1,p2 only 
by their orders of magnitude. There is a similar governing equation for AL, with the 
roles of AR and AL interchanged, and with complex-conjugated coefficients. 

The analysis of the equations for AR and AL is standard. Below the marginal 
stability curve (that is, for R2 < 0) the origin is the only fixed point, and is stable. 
Above the marginal curve, when R2 > 0, there are four fixed points: the origin, with 
AR = AL = 0, corresponding to a state of no motion; a left-travelling wave with 
AR = 0, AL = PTeiDT ; a right-travelling wave with AL = 0, AR = PTe-i”T ; a standing 
wave with l A ~ l  = l A ~ l  = P T / &  Here 

and 
Q =  -@R2 (4 + (1 - z)C) 

240o( 1 + z) ’ 

Since oQ < 0, the travelling waves decrease in speed as 
the standing wave are unstable, while each travelling wave is stable. A bifurcation 
diagram is shown in figure 3. 

In contrast to ‘ideal double diffusion’ (IDD), the stability of the travelling wave can 
be determined from this third-order analysis. For IDD the real part of the coefficient 
of A R I A R ~ ~  vanishes in (6.3), and fifth-order terms must be included to determine the 
stability of travelling waves. 

7 

R2 increases. The origin and 

6.3. Double-zero bifurcation 
Near the double-zero bifurcation (Takens-Bogdanov bifurcation) at (R,  C) = (&, &), 
equations (4.8) may be written as 

(uo - z6o)t = 0 + 0(e2) ,  

(zuo - 6o)t  = ( 1  + T)(W - z6o)yy + We2), 
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FIGURE 3. Bifurcation diagram for the oscillatory bifurcation. The parameter R increases from left 
to right, and the horizontal line represents the basic state. A solid line indicates a stable solution, 
while a dotted line indicates an unstable one. Both travelling waves (TW) and standing waves (SW) 
are supercritical; only TW are stable. 

a form which clearly indicates proximity to a pair of zero eigenvalues. 

eigenvector of (4.8) are, respectively, 
When k = k,, R = & and C = Cd the zero-eigenvector and generalized zero- 

Denoting the amplitudes of these vectors by P and Q, and substituting 

into the linearized equations, we find 

Now we turn to the nonlinear equations. As for the derivation of amplitude 
equations near the steady and oscillatory bifurcations, we expand u and 8 as power 
series in the small parameter 6 ,  in the form (6.1). To unfold the double-zero bifurcation 
at the fixed wavenumber k,  we must allow both R and C to vary independently: 

R = & + S2R2, c = Cd + 62c2. 

In general, the ordinary differential evolution equations for P and Q at an O(2)- 
symmetric Takens-Bogdanov bifurcation may be written in the form (Dangelmayr & 
Knobloch 1987) 

Here, p and v are unfolding parameters, linear combinations of R2 and C2. The 
Appendix describes the calculation of p, v and the coefficients a, c, d of the nonlinear 
terms (the coefficient b turns out not to be important in determining the bifurcations 
of (4.8)). Once we know these we refer to the catalogue of bifurcation diagrams 
given by Dangelmayr & Knobloch (1987) to select the one appropriate to the present 
problem. We use the approximate expressions that, to O(e),  

--z 
k,Z, 9 - - k:, 

z --z2 1 
&--  k:, am- k:, %? - - 

1 - Z  1 - Z  1-7  1-7 



Large-scale convection 205 

FIGURE 4. Bifurcation diagram for the double-zero bifurcation. Here 0 < C - .& << Cd, and R 
increases from left to right. Solid and dotted lines indicate stable and unstable solutions, respectively. 
The supercritical travelling waves (TW) are initially stable, but transfer their stability to the standing 
waves (SW) through a branch of stable modulated travelling waves (MW). 

and find that the significant coefficients of the nonlinear terms in (6.4) are 

a - 3flkE0s5 > 0, 

where f l  = 155/ (126~(1 - z)’). An important quantity in determining the bifurcation 
structure of the solution is d / m ,  where m = 2c+d. Since c = d then d /m = 1/3, which 
implies that we are in region ‘ I l l  - ( A  > 0)’ of parameter space, in the notation of 
Dangelmayr & Knobloch (1987). 

In order to describe the implications of our analysis in (S, R)-parameter space we 
need to relate the unfolding parameters p,v  in (6.4) to the displacements from the 
critical point ( S d , & ) :  the results in the Appendix give the relations 

C, d N -flk;s4( 1 + z), 

1 2 0 ~  N k,4(2R2 - S2), 
1 2 0 ~  = k3R2 - S2). 

According to Dangelmayr & Knobloch (1987) the interesting bifurcations occur in 
the region p < 0 as v is increased through zero, which corresponds to increasing R 
with S just above S d .  The bifurcations of the system are indicated in figure 4. A 
sequence of bifurcations ensues as R increases between approximately & + (S - Sd)  
and & + (S - S ~ ) / Z :  first there is a Hopf bifurcation which yields supercritical TW 
and SW with the former stable and the latter unstable. This is just as we have 
already discovered in our analysis of the oscillatory bifurcation. As R is further 
increased, however, the TW branch loses stability in a Hopf bifurcation as a branch 
of modulated waves (MW) bifurcates from it. This MW branch becomes heteroclinic 
to the SW branch after which the SW branch is stable. Upon further increase in 
R the SW branch becomes heteroclinic to the subcritical SS branch, and all the 
small-amplitude solutions predicted by (6.4) are unstable. 

On the other hand, if S is just below S d  the only bifurcation as R is increased is the 
subcritical steady bifurcation we described earlier. 

These qualitative results for the double-zero bifurcation are independent of sp, and 
so they apply directly to both Langmuir circulation and double-diffusive convection, 
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with the boundary conditions we have indicated. For ‘ideal double diffusion’ the 
Takens-Bogdanov normal form is degenerate because the coefficient d vanishes, and 
the direction of bifurcation to TW cannot be decided until fifth-order terms are 
considered. Here, this degeneracy does not arise. 

7. Equal eddy diffusivities for heat and momentum 
If we set z = 1, so that the eddy diffusivities for heat and momentum are equal, 

then the equations (4.8) that govern u and 0 are identical except for the terms derived 
from the boundary conditions. If a = y then (4.8) may be collapsed to a single 
equation for the evolution of the ‘total perturbation buoyancy’ B = Ru - SO in (2.1): 

R - S  d2B a l (R-S)a4B a aB 
R ~ + c l ~ ( ~ ) .  

- = - a B +  1-- 
aB 
a t  ( 120 ) dy2 - 

This is just the equation derived by Chapman & Proctor (1980), and by Gertsberg & 
Sivashinsky (1981) for Rayleigh-Bhnard convection, in which there is a single diffusing 
species (temperature). This equation possesses a Lyapunov functional, which forces 
the long-time solution to approach a steady state. 

On the other hand, if a # y, then (4.8) cannot be made into a single equation. 
The characteristic equation (5.1) permits only a steady bifurcation within its range of 
validity, when the Rayleigh number R takes the value 

112 
R, = 120 + s + 2 - [a(l + S/120) - ys/120]} + O(2). { :::: 

The absence of an oscillatory bifurcation when z = 1 is consistent with the divergence 
of the threshold Cd - z/( 1 - z) as z + 1. The amplitude of steady convection satisfies 
a Landau equation which is the limit of (6.2) as z -+ 1 : 

dA R2 155 
~ d T  = kf-A 120 - k ; - ~ i ~ l ~ .  42 

The bifurcation is always supercritical (the nonlinear term is stabilizing), indicating a 
smooth transition to motion. 

8. Conclusions 
In this paper we have shown that it is possible to find stable steady states, 

travelling waves, modulated waves and standing waves as post-bifurcation states in 
double-diffusive convection when the bounding horizontal surfaces are stress-free, 
with nearly constant heat flux, and nearly zero salt flux. The same set of possibilities 
has been shown for Langmuir circulation when the air/sea and mixed-layer/abyss 
boundaries have heat transfers that are only slightly affected by the differences in 
temperatures across the boundaries, and where the stresses transmitted across these 
boundaries are nearly constant. 

Our analysis has proceeded from amplitude equations that we develop as asymptotic 
approximations based on the small departure of the perturbation fluxes from no-flux 
conditions, and the large aspect ratio of the motion that results from instabilities 
in such a system. The validity of the amplitude equations does not depend on 
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weak nonlinearity. On the other hand, the amplitude equations lose validity if the 
coefficients al and bl become very large. This can happen, for example, when 
the destabilizing Rayleigh number for the systems under consideration is highly 
supercritical. The stability threshold for most circumstances is reached when the 
Rayleigh number is of order lo2; if it is an order of magnitude higher than this, 
a1 and bl are large. We attribute this failure of the amplitude equations to the fact 
that shorter-wavelength instabilities are possible under highly supercritical conditions, 
and increases in a1 and bl, the coefficients of the highest-order spatial derivatives, are 
clearly the appropriate signal given by the approximation as notification of impending 
failure. In applications, the Rayleigh number can easily be large enough to render 
the approximation invalid. We note that the same limitation applies to the amplitude 
equation of Cessi & Young (1992). 

S.M.C. is an Australian Research Council Australian Postdoctoral Research Fellow. 
The work of S.L. is supported by the National Science Foundation under grant 
OCE90-17882, and by the Office of Naval Research under grants N00014-92-J-1547 
and the Marine Boundary Layer Accelerated Research Initiative. 

Appendix. Computation of coefficients for the double-zero normal form 

coefficients in (6.4). At O(6) in the expansion for u and 8 we let 
Here we record some of the steps in the algebra leading to the evaluation of the 

Then (4.8) is satisfied at O(6). The absence of quadratic nonlinearity in (4.8) allows 
us to set U2 = O2 = 0. 

The terms of O(S3) in the governing equations provide solvability conditions on 
the coefficients in (6.4). For this purpose we need consider only the resonant terms at 
O(S3),  that is, those proportional to eik,y. 

We write 

u3 = [(R2ul + c2u2)P + (R2v3 + z2v4)Q 

4- PIP12Vs 4- QIPI2vs + Q*P2v7 + PIQI2Vg + Q2P*u9 + QIQ12~lo] eikCy 
+ C.C. + . . . , 

where VI, . . . , v10 are constants, and . - . represents terms proportional to e*3ikcY (non- 
resonant terms). By adding suitable multiples of the zero-eigenvector to U3 we may 
set 0 3  = 0. Then at O(S3) 

ut = [(R2v1 + ; 5 2 ~ 2 ) Q  + (2QIPI2 + P2Q')v5 + (Q2P* + PIQI2)v6 

+ 2PIQI2U7 + QIQI2us + QIQI2u9 

+ d {PP + v Q  + [alPI2 + blQI2 + c(PQ* + P'Q)] P + dlPI2Q} / ( B  - W)] eikcy 
+ C.C. + * * * , 

where the first two lines arise from U3t and the third from U1,. Similarly, 

0, = [B { p P  + v Q  + [ a W 2  + blQI2 + c(PQ' + P'Q)] P + dlPI2Q} / ( B  -%)I eikcy 
+ c.c + . . . . 
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the factor eikfJ', we find the nonlinear term in the u-equation of (4.8) is 

S. M .  Cox and S. Leibovich 

At O(S3), considering only the resonant terms and omitting explicit reference to 

.A'' -7flk: {3B(B + ~ ~ d ) ~ P l P 1 ~  + 3d(d - T ~ ~ ) ~ Q I Q I ~ / ( B  - 5Q3 

+ (B + 72d)(3~dB + ~ ~ ( 4 ~  - 2B2))(P2Q'  + 2QlP12)/(99 - %') 

+ (d - z2@)(3dB + - B2)) (Q2P" + 2PlQ12)/(B - U ) 2 } ,  

and in the 0-equation, 

.A'" -f lk: {-3d(B + T ~ ~ ) ~ P I P ~ ~  + 3B(d - T2B)2QlQ12/(B - U)3 

+ (B + z 2 d ) ( 3 e 2 d 4 ?  + B2 - 2 d 2 ) ) ( P 2 Q *  + 2QlP12)/(B - U )  

+ (d - r 2 B ) ( k 2 d g  + 2 B 2  - ,d2) ) (Q2P* + 2PlQ12)/(B - U ) 2 } ,  

where f l  = 155/( 1262( 1 - T ) ~ ) .  The linear terms in both the u and 0 equations of (4.8) 
are 

' P + dQ/(B - W)) - 7C2k,Z(-dP + B Q / ( B  - %')) 
1 

-R2k:(53 
120 

2. 
We define now 

A ! L = & ' + 2 ,  N = N ' + 2 .  

u1, + U3l = d ( U 1  + U3) + 9801 + A, 
01, = W( u1 + U3) + 901 + N. 

Then equations (4.8) become at O(S3) 

Now we may proceed to solve a succession of equations to determine the coefficients 

First consider the terms proportional to P at O(S3). These are 
in (6.4). 

From these it follows that 

Terms proportional to Q give 

dV 1 
B-% 120 

u : Rzvl + C ~ V Z  + -; = d ( R 2 ~ 3  + C2~4) + k;(---dR2 - B T Z ~ ) / ( B  - U), 
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Turning now to the nonlinear terms in (4.8) at 0(d3),  we find those proportional to 
PIPI’ to be 

Solving for u5 and a we obtain 

a = 3 f l k ; ( ~  + r 2 d ) ’ d ( 1  - z), 

U5 = 3 f i k ; ( B  + T ’ d ) ’ B ( %  - TB)/[d(%? - B)]. 

Those terms proportional to QIPl2 are 

U :  

2115 + d ( c  + d)/(B - %?) = d u g  - ~ f l k ; ( B +  ~ ~ d ) ( 6 d B  + ~ ~ [ 2 d ~  - 4B2])/(B - %?), 
6’ : B ( c  + d)/(&? - 59) = %?ug - f l k ; ( B  + ~ ~ d ) ( 6 ~ ~ d B  + 2B2 - 4d2)/(B - %?). 

The solutions for the unknowns are 

c + d = - f l k ; ( B  + ~ ~ d ) ( 2 B  + ~ B T  + 6 4 ~ ~  + 2 d z 3 ) ,  
u6 = f l k ; ( B  + r2d)(2%? - 3B‘2 - dT3)2B/[%?(B - %)I. 

The terms proportional to Q * P 2  indicate that c = d, and so 

c = d = -fik;(B + ~’d)(&? + ~ B T  + 3 d z 2  + d z 3 ) .  
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